Static Analysis of Triangular Plates

author

  • M. M. Saadatpour and D. Mokhalefi
Abstract:

This paper may be regarded as a new numerical method for the analysis of triangular thin plates using the natural area coordinates. Previous studies on the solution of triangular plates with different boundary conditions are mostly based on the Rayleigh-Ritz principle which is performed in the Cartesian coordinates. Consequently, manipulation of the geometry and numerical calculation of the integrals are time consuming and tedious. In this paper a new approach is developed to analyze triangular plates by the Ritz method, using interpolation functions in the area coordinates. The geometry is presented in a natural way by mapping a parent triangle and the integrals are evaluated analytically. In this approach, the convergence is always assured due to the completeness of interpolating polynomials. Several examples are presented and the results are compared with other available data.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

static analysis of triangular plates

this paper may be regarded as a new numerical method for the analysis of triangular thin plates using the natural area coordinates. previous studies on the solution of triangular plates with different boundary conditions are mostly based on the rayleigh-ritz principle which is performed in the cartesian coordinates. consequently, manipulation of the geometry and numerical calculation of the int...

full text

static analysis of piezoelectric laminated composite plates

the levy-type analytical solution is employed for the problem of bending of cross-ply and antisymmetric angle-ply piezoelectric hybrid laminated plates with at least two simply supported opposite edges. the governing equations of equilibrium are derived in the framework of the first-order shear deformation plate theory. the equations are classified according to the crystallography type of piezo...

full text

Vibration and Static Analysis of Functionally Graded Porous Plates

This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 2

pages  51- 61

publication date 1998-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023